
Securing Software Configurations

Paul Gazzillo
Assistant Professor of Computer Science

University of Central Florida
04/03/2024

Bringing Analysis and Testing to the Entire Software Ecosystem

Vision

Expand the scope of software analysis beyond the programming language to the
entire software ecosystem to further strengthen and secure software.

Memory Safety Dominates Exploits

Source: 2023 CWE Top 10 KEV Weaknesses List Insights

C/C++ Is the Origin

Memory Safe Programming is Solved

Just a Matter of Time

Rust for Linux Swift for Apple

What’s Left After Memory-Based Exploits?

DevOps Phases

Memory bugs
happen here

Other Phases of Development and Operations

DevOps Phases

High Profile Attacks

• Hacked build system

• Malware in signed code

• “More than 200 victims”

https://www.theguardian.com/technology/2021/dec/10/software-flaw-most-critical-vulnerability-log-4-shell

https://www.bloomberg.com/news/articles/2020-12-19/at-least-200-victims-identified-in-suspected-russian-hacking

• Feature, not bug

• Disable with configuration
setting

• “Most critical vulnerability”

Why Bother Breaking In?

Inferring and Securing
Software Configurations

Misconfiguration Vulnerabilities Are Prevalent

#6 in OWASP top ten most critical security risks
most common risk reported

“This exploit shows how much impact the kernel configuration can have
on how easy it is to write an exploit for a kernel bug.”

Highly-Configurable Software is Widespread

Linux kernel
• 70% of mobile devices
• 70% of IoT developers
• 40% of servers

Apache web server
• 40% of servers

billions of devices

Misconfiguration Vulnerabilities are Rooted in
Software Configuration Management

Manages change to a software system

Allows customizing software without reprogramming

Falls outside of classic program analysis

Goal: a world without misconfigurations

Solution approach: formal methods to validate
and generate software configurations

Challenges: a lack of existing specifications,
an enormous state space

Research Goals

Create a rigorous definition of configuration specifications

Mechanize the generation of valid configurations

Automatically discover secure configurations

Motivating Example: OptionsBleed

A Limit Directive Restricts Access to HTTP
Methods in an Apache Webserver

<Limit PUT DELTE BIND>
</Limit>

OptionsBleed Leaks Arbitrary Memory Contents
of an Apache Webserver

<Limit PUT DELTE BIND>
</Limit>

invalid http method exposes
a use-after-free bug

Subtle Interactions Between Configuration
Mechanisms Influence OptionsBleed’s Occurrence

<Limit PUT DELTE BIND>
</Limit>

BIND is only valid with the
WebDAV HTTP extension

<Limit PUT DELTE BIND>
</Limit>

./configure —enable-dav

a2enmod dav
WebDAV is enabled only with a
compile-time flag and run-time

module loader

Subtle Interactions Between Configuration
Mechanisms Influence OptionsBleed’s Occurrence

Solution approach: automatically validate
and generate software configurations

Automation needs a unified global view of
configuration specifications

Configuration options are long-lived values,
global to an entire software system

Formalize Valid Configurations as Constraints
Among All Configuration Options

<Limit PUT DELTE BIND>
</Limit>

./configure —enable-dav

a2enmod dav

 limit.method = PUT
or limit.method = DELETE
or (limit.method = BIND
 and build.enable-dav =
True
 and module.dav = True) limit

module

build

configuration validity is satisfiability

Formalizing the Linux Build and
Configuration System

The Linux Kernel Build System

70% of mobile devices
70% of IoT developers
40% of servers

Example: Linux Kernel

Linux Kernel

The Kernel is Ultra-Configurable

Configurability Makes Maintenance Harder

given a patch, what configurations does it affect? (jmake, lawall et al)

given a bug, what configurations does it appear in? (config-bisect)

what’s a minimal configuration that includes specific source? (config-bisect)

what code is no longer configurable in the kernel? (undertaker, tarlet et al)

There’s About 15,000 Configuration Options

Written in about 150,000 Lines of Kconfig

pic of kconfig files

there’s around 1,500 Kconfig files

Can Have Trillions of Program in One Codebase

• Allows system builders to reuse existing software

Linux build system
generates many variations

Configuration options
enable/disable features

Build customized software
without reprogramming

Configurability Complicates Maintenance

• Even if one variant program is
correct, another might be broken

• Have to test all variations that
might be used

• Automated testing typically
works on one variant at a time

Linux source code
Testing infrastructureBug here

The Linux Kernel has a Very Active Codebase

~30k mailing list messages per month

~6k commits per month, 100s per day

e.g., ~13k commits between v5.12 and v5.13

Linux-next commit history

All These Code Changes Need Testing

https://lwn.net/Articles/853039/

Intel 0-day kernel test robot
• Suite of static and dynamic testing tools

• compile, boot, performance, etc.
• continuously runs on new commits in linux-next

Google syzbot
• syzkaller system call fuzz tester
• continuously tests the kernel
• runs on linux-next, other versions

The Build System Causes
Blindspots in Testing

Code Hidden by the Build System

A new bug may only appear
in some configurations

Configuration options
determine what’s compiled

Configuration-dependent
bugs not always reachable

Bug here

Bug not here

Bug not
reachable

Test Robots Miss Most Code Changes

Configuration Patch Coverage

Default 22%

Random 30%

Maximal 89%

10x longer build time

No runtime testing

No variation

Test Robots Miss Most Code Changes

Configuration Patch Coverage

Default 22%

Random 30%

Maximal 89%

Test robots mostly use
these configurations

Maximal Testing is Limited

https://lwn.net/Articles/853039/

Intel 0-day kernel test robot
• Maximal only for build test

Google syzbot
• Based on default configuration

Build System Turns Configurations into
Binaries

configuration option
settings (.config)

kernel binary
(vmlinuz)

build system

build system

Build System Comprises Several Tools

Kconfig Kbuild
Makefiles

C
preprocessor

C compiler,
linker

configuration option
settings (.config)

kernel binary
(vmlinuz)

Build System Comprises Several Tools

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

selected
source code

Use Program Analysis on Build Tools

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

logical constraints on .config files for each file:line

kclause
[ESEC/FSE21]

kmax
[ESEC/FSE17]

SuperC
[PLDI12]

Kconfig Kbuild
Makefiles

C
preprocessor

configuration option
settings (.config)

configured and
preprocessed
source code

kclause
[ESEC/FSE21]

kmax
[ESEC/FSE17]

SuperC
[PLDI12]

logical constraints on .config files for each file:line

.config file
constraints

source code
locations

Formally Model Build System Behavior

Applications
● kismet [ESEC/FSE21]

–Automatically find Linux Kconfig bugs
● krepair [FSE24]

–Automatically change configuration files to cover patched code

Conclusion
● Current testing and analysis focuses on program code

● The software ecosystem broadens the attack surface beyond code

● Misconfigurations are one of the most critical vulnerabilities

● Our approach: formal model and test configurations

● Applications: find configuration bugs, improve testing

	Beyond the Programming Language
	Vision
	Memory Safety Dominates Exploits
	C/C++ Is the Origin
	Memory Safe Programming is Solved
	Just a Matter of Time
	What’s Left After Memory-Based Exploits?
	Other Phases of Development and Operations
	High Profile Attacks
	Slide 11
	Why Bother Breaking In?
	Inferring and Securing Software Configurations
	misconfiguration vulnerabilities are prevalent
	highly-configurable software is widespread
	misconfiguration vulnerabilities are rooted in software configu
	vision: a world without misconfiguration vulnerabilities
	solution: formal methods to validate and generate software conf
	challenges: a lack of existing specifications, an enormous stat
	research goals
	Motivating Example: Optionsbleed
	a Limit directive restricts access to HTTP methods in an Apache
	optionsbleed leaks arbitrary memory contents of an apache webse
	subtle interactions between configuration mechanisms influence
	subtle interactions between configuration mechanisms influence (2)
	solution approach: automatically validate and generate software
	automation needs a unified global view of configuration specifi
	configuration options are long-lived values, global to an entir
	formalize valid configurations as constraints among all configu
	Slide 36
	The Linux Kernel Build System
	Example: Linux Kernel
	the kernel is ultra-configurable
	configurability makes maintenance harder
	there’s about 15,000 configuration options
	written in about 150,000 lines of Kconfig
	Can Have Trillions of Program in One Codebase
	Configurability Complicates Maintenance
	The Linux Kernel has a Very Active Codebase
	All These Code Changes Need Testing
	The Build System Causes Blindspots in Testing (2)
	Code Hidden by the Build System
	Test Robots Miss Most Code Changes
	Test Robots Miss Most Code Changes (2)
	Maximal Testing is Limited
	Build System Turns Configurations into Binaries
	Build System Comprises Several Tools
	Build System Comprises Several Tools (2)
	Slide 62
	Slide 63
	Slide 64
	Slide 65

